Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Extensive functional diversification of the Populus glutathione S-transferase supergene family.

Identifieur interne : 003633 ( Main/Exploration ); précédent : 003632; suivant : 003634

Extensive functional diversification of the Populus glutathione S-transferase supergene family.

Auteurs : Ting Lan [République populaire de Chine] ; Zhi-Ling Yang ; Xue Yang ; Yan-Jing Liu ; Xiao-Ru Wang ; Qing-Yin Zeng

Source :

RBID : pubmed:19996377

Descripteurs français

English descriptors

Abstract

Identifying how genes and their functions evolve after duplication is central to understanding gene family radiation. In this study, we systematically examined the functional diversification of the glutathione S-transferase (GST) gene family in Populus trichocarpa by integrating phylogeny, expression, substrate specificity, and enzyme kinetic data. GSTs are ubiquitous proteins in plants that play important roles in stress tolerance and detoxification metabolism. Genome annotation identified 81 GST genes in Populus that were divided into eight classes with distinct divergence in their evolutionary rate, gene structure, expression responses to abiotic stressors, and enzymatic properties of encoded proteins. In addition, when all the functional parameters were examined, clear divergence was observed within tandem clusters and between paralogous gene pairs, suggesting that subfunctionalization has taken place among duplicate genes. The two domains of GST proteins appear to have evolved under differential selective pressures. The C-terminal domain seems to have been subject to more relaxed functional constraints or divergent directional selection, which may have allowed rapid changes in substrate specificity, affinity, and activity, while maintaining the primary function of the enzyme. Our findings shed light on mechanisms that facilitate the retention of duplicate genes, which can result in a large gene family with a broad substrate spectrum and a wide range of reactivity toward different substrates.

DOI: 10.1105/tpc.109.070219
PubMed: 19996377
PubMed Central: PMC2814494


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Extensive functional diversification of the Populus glutathione S-transferase supergene family.</title>
<author>
<name sortKey="Lan, Ting" sort="Lan, Ting" uniqKey="Lan T" first="Ting" last="Lan">Ting Lan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zhi Ling" sort="Yang, Zhi Ling" uniqKey="Yang Z" first="Zhi-Ling" last="Yang">Zhi-Ling Yang</name>
</author>
<author>
<name sortKey="Yang, Xue" sort="Yang, Xue" uniqKey="Yang X" first="Xue" last="Yang">Xue Yang</name>
</author>
<author>
<name sortKey="Liu, Yan Jing" sort="Liu, Yan Jing" uniqKey="Liu Y" first="Yan-Jing" last="Liu">Yan-Jing Liu</name>
</author>
<author>
<name sortKey="Wang, Xiao Ru" sort="Wang, Xiao Ru" uniqKey="Wang X" first="Xiao-Ru" last="Wang">Xiao-Ru Wang</name>
</author>
<author>
<name sortKey="Zeng, Qing Yin" sort="Zeng, Qing Yin" uniqKey="Zeng Q" first="Qing-Yin" last="Zeng">Qing-Yin Zeng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19996377</idno>
<idno type="pmid">19996377</idno>
<idno type="doi">10.1105/tpc.109.070219</idno>
<idno type="pmc">PMC2814494</idno>
<idno type="wicri:Area/Main/Corpus">003368</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003368</idno>
<idno type="wicri:Area/Main/Curation">003368</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003368</idno>
<idno type="wicri:Area/Main/Exploration">003368</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Extensive functional diversification of the Populus glutathione S-transferase supergene family.</title>
<author>
<name sortKey="Lan, Ting" sort="Lan, Ting" uniqKey="Lan T" first="Ting" last="Lan">Ting Lan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zhi Ling" sort="Yang, Zhi Ling" uniqKey="Yang Z" first="Zhi-Ling" last="Yang">Zhi-Ling Yang</name>
</author>
<author>
<name sortKey="Yang, Xue" sort="Yang, Xue" uniqKey="Yang X" first="Xue" last="Yang">Xue Yang</name>
</author>
<author>
<name sortKey="Liu, Yan Jing" sort="Liu, Yan Jing" uniqKey="Liu Y" first="Yan-Jing" last="Liu">Yan-Jing Liu</name>
</author>
<author>
<name sortKey="Wang, Xiao Ru" sort="Wang, Xiao Ru" uniqKey="Wang X" first="Xiao-Ru" last="Wang">Xiao-Ru Wang</name>
</author>
<author>
<name sortKey="Zeng, Qing Yin" sort="Zeng, Qing Yin" uniqKey="Zeng Q" first="Qing-Yin" last="Zeng">Qing-Yin Zeng</name>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="eISSN">1532-298X</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cloning, Molecular (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Duplicate (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Glutathione Transferase (genetics)</term>
<term>Models, Molecular (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Analysis, Protein (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de séquence de protéine (MeSH)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Glutathione transferase (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Gènes dupliqués (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
<term>Glutathione Transferase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Glutathione transferase</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cloning, Molecular</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Duplicate</term>
<term>Genes, Plant</term>
<term>Models, Molecular</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, Protein</term>
<term>Stress, Physiological</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de séquence de protéine</term>
<term>Clonage moléculaire</term>
<term>Famille multigénique</term>
<term>Gènes de plante</term>
<term>Gènes dupliqués</term>
<term>Modèles moléculaires</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spécificité du substrat</term>
<term>Stress physiologique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Identifying how genes and their functions evolve after duplication is central to understanding gene family radiation. In this study, we systematically examined the functional diversification of the glutathione S-transferase (GST) gene family in Populus trichocarpa by integrating phylogeny, expression, substrate specificity, and enzyme kinetic data. GSTs are ubiquitous proteins in plants that play important roles in stress tolerance and detoxification metabolism. Genome annotation identified 81 GST genes in Populus that were divided into eight classes with distinct divergence in their evolutionary rate, gene structure, expression responses to abiotic stressors, and enzymatic properties of encoded proteins. In addition, when all the functional parameters were examined, clear divergence was observed within tandem clusters and between paralogous gene pairs, suggesting that subfunctionalization has taken place among duplicate genes. The two domains of GST proteins appear to have evolved under differential selective pressures. The C-terminal domain seems to have been subject to more relaxed functional constraints or divergent directional selection, which may have allowed rapid changes in substrate specificity, affinity, and activity, while maintaining the primary function of the enzyme. Our findings shed light on mechanisms that facilitate the retention of duplicate genes, which can result in a large gene family with a broad substrate spectrum and a wide range of reactivity toward different substrates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19996377</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-298X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Extensive functional diversification of the Populus glutathione S-transferase supergene family.</ArticleTitle>
<Pagination>
<MedlinePgn>3749-66</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1105/tpc.109.070219</ELocationID>
<Abstract>
<AbstractText>Identifying how genes and their functions evolve after duplication is central to understanding gene family radiation. In this study, we systematically examined the functional diversification of the glutathione S-transferase (GST) gene family in Populus trichocarpa by integrating phylogeny, expression, substrate specificity, and enzyme kinetic data. GSTs are ubiquitous proteins in plants that play important roles in stress tolerance and detoxification metabolism. Genome annotation identified 81 GST genes in Populus that were divided into eight classes with distinct divergence in their evolutionary rate, gene structure, expression responses to abiotic stressors, and enzymatic properties of encoded proteins. In addition, when all the functional parameters were examined, clear divergence was observed within tandem clusters and between paralogous gene pairs, suggesting that subfunctionalization has taken place among duplicate genes. The two domains of GST proteins appear to have evolved under differential selective pressures. The C-terminal domain seems to have been subject to more relaxed functional constraints or divergent directional selection, which may have allowed rapid changes in substrate specificity, affinity, and activity, while maintaining the primary function of the enzyme. Our findings shed light on mechanisms that facilitate the retention of duplicate genes, which can result in a large gene family with a broad substrate spectrum and a wide range of reactivity toward different substrates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lan</LastName>
<ForeName>Ting</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Zhi-Ling</ForeName>
<Initials>ZL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Xue</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yan-Jing</ForeName>
<Initials>YJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xiao-Ru</ForeName>
<Initials>XR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Qing-Yin</ForeName>
<Initials>QY</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020131" MajorTopicYN="Y">Genes, Duplicate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020539" MajorTopicYN="N">Sequence Analysis, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19996377</ArticleId>
<ArticleId IdType="pii">tpc.109.070219</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.109.070219</ArticleId>
<ArticleId IdType="pmc">PMC2814494</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2005 Mar;15(3):385-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15741509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 May;155(1):431-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10790415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Apr;22(4):1107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15689528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Nov;21(11):591-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2005 Dec;15(6):716-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16263269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;401:169-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2232-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(2):R13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Jul 28;360(5):934-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16806268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(9):R87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17010199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2007 Aug;28(8):397-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17629961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 10;282(32):23264-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17561509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2329-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Oct;24(10):2298-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17670808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17004-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17942681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Jul;4(7):e1000113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008;4(9):e1000191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18787702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Jan;26(1):85-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2009 Jan;31(1):29-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19153999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19267902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2009 May;281(5):483-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19184107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Aug;123(4):1561-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Sep 22;275(38):29207-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10859306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Oct;12(10):1939-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11041888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002;3(3):REVIEWS3004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11897031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Jul;12(7):1048-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12097341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Sep;12(9):1305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12213767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Apr;15(4):809-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2003 Jul;118(2-3):279-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12868616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 21;278(47):47190-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2003;374:461-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14696385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1220-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 18;279(25):26098-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15069083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2004 Jun;271(5):511-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15069639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1679-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1974 Nov 25;249(22):7130-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4436300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 1994 May 23;256(1346):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8029240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1994 May 1;218(2):463-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8074309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Jun 1;17(11):3155-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9606197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Apr;151(4):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10101175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Sep;15(9):763-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10498777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Aug;40(6):997-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10527424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D192-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 May;58(3):525-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19154202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res (Camb). 2009 Aug;91(4):267-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19640322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 May;5(5):193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10785664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Apr;8(2):122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752990</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Liu, Yan Jing" sort="Liu, Yan Jing" uniqKey="Liu Y" first="Yan-Jing" last="Liu">Yan-Jing Liu</name>
<name sortKey="Wang, Xiao Ru" sort="Wang, Xiao Ru" uniqKey="Wang X" first="Xiao-Ru" last="Wang">Xiao-Ru Wang</name>
<name sortKey="Yang, Xue" sort="Yang, Xue" uniqKey="Yang X" first="Xue" last="Yang">Xue Yang</name>
<name sortKey="Yang, Zhi Ling" sort="Yang, Zhi Ling" uniqKey="Yang Z" first="Zhi-Ling" last="Yang">Zhi-Ling Yang</name>
<name sortKey="Zeng, Qing Yin" sort="Zeng, Qing Yin" uniqKey="Zeng Q" first="Qing-Yin" last="Zeng">Qing-Yin Zeng</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Lan, Ting" sort="Lan, Ting" uniqKey="Lan T" first="Ting" last="Lan">Ting Lan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003633 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003633 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19996377
   |texte=   Extensive functional diversification of the Populus glutathione S-transferase supergene family.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19996377" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020